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The Bloch mode scattering matrix method is applied to several photonic crystal waveguide structures and
devices, including waveguide dislocations, a Fabry-Pérot resonator, a folded directional coupler, and a
Y-junction design. The method is an efficient tool for calculating the properties of extended photonic crystal
(PC) devices, in particular when the device consists of a small number of distinct photonic crystal structures,
or for long propagation lengths through uniform PC waveguides. The physical insight provided by the method
is used to derive simple, semianalytic models that allow fast and efficient calculations of complex photonic
crystal structures. We discuss the situations in which such simplifications can be made and provide examples.
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I. INTRODUCTION

In a companion paper[1], hereafter referred to as I, we
presented the theoretical framework of the Bloch mode
scattering matrix method. In this paper, we build on the re-
sults of I and apply the Bloch mode method to the study of
several photonic crystal(PC) structures and devices to ex-
hibit the advantages of the method. In I we discussed the full
method, based on a complete set of eigenfunctions of the
structures, both propagating and evanescent. In implement-
ing the method here, the set of eigenfunctions is truncated at
a level determined by the accuracy required in the calcula-
tion. We show that in many situations, good results are
achieved using an approximate method in which only a few
eigenfunctions are included. The choice of which modes to
include must be based on the physical properties of the ge-
ometry, and, in the cases considered here, they correspond to
the propagating modes. The method, in either form, is at its
most powerful when the structure consists of a small number
of stacks.

The structures we here consider include waveguide dislo-
cations, Fabry-Pérot resonators, a waveguide structure called
the “folded directional coupler”(FDC) [2], and a PC-based
Y junction. Each of these structures is readily modeled as a
finite number of discrete waveguide sections, replicated pe-
riodically in the horizontal(x-axis) direction, with propaga-
tion occurring in thexy plane. We also demonstrate how the
method can provide an intuitive understanding of the under-
lying physics, leading to simple semianalytic expressions to
describe the properties of complex photonic crystal struc-
tures. A specific application of this latter approach was dis-
cussed in Ref.[3] in the context of a finite photonic crystal
waveguide terminated in free space.

II. PHOTONIC CRYSTAL AND WAVEGUIDE
PARAMETERS

Two-dimensional photonic crystals used for waveguiding
typically have square or triangular lattices of cylinders,
where the cylinders are either dielectric in an air background,
or air cylinders in a dielectric background, and so the refrac-
tive index is piecewise constant. Depending on the choice of
lattice parameters and refractive index, the PC can have band
gaps for TE(magnetic field parallel to cylinder axis) or TM
(electric field parallel to cylinder axis) polarization or both.
In general, lattices of air cylinders in a background of higher
refractive index dielectric have larger TE gaps than TM, and
the reverse is the case for dielectric cylinders in air[4].

Two different PC lattices have been chosen for the ex-
amples used in this paper. PC1 is a square lattice with period
d of dielectric cylinders with refractive indexnc=3 in air
snb=1d. The cylinder radius isa=0.3d, resulting in a TM
band gap in the wavelength range 2.986,l /d,3.774,
corresponding to a scaled frequency range of
0.265,vd/2pc,0.337. PC2 is a triangular lattice with pe-
riod d of air cylinderssnc=1d in a dielectric with indexnb

=Î11.4. For a hole radius ofa=0.3d, a TE band gap exists in
the range 3.335,l /d,4.629s0.216,vd/2pc,0.299d.

To construct the lattices of cylinders for the Bloch mode
method described in I, we must first calculate the plane-wave
scattering matrices of the individual grating layers that are
stacked to produce the lattice. For the Bloch mode analysis,
these layers must be periodic with a supercell periodDx,
where the unit cell can contain multiple cylinders. Typically,
the cylinders in each unit cell are arranged with a local pe-
riod d, and Dx is chosen to be an integral multiple of the
local period, so dislocations are not formed at the edges of
the supercell. The supercell period must be large enough to
ensure that there is negligible coupling between adjacent
cells. For propagation in a straight waveguide in PC1,
Dx.11d is sufficient to minimize cross coupling. Thus, un-*Electronic address: twhite@physics.usyd.edu.au
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less otherwise stated, the results given here are forDx=21d,
so the structures are essentially isolated from each other. To
form a regular photonic crystal, consider stacking many
identical grating layers with local periodd so that each suc-
cessive layer is shifteddx along thex axis anddy along they
axis. Here, thex-y plane lies perpendicular to the axes of the
cylinders. Stacking these layers withdx=0 anddy=d clearly
results in the required geometry for PC1—a square lattice
with periodd. For reasons to be discussed in Sec. III, it can
also be useful to construct the same square lattice with the
axes rotated by ±45°. This is achieved by starting with
a fundamental grating layer of periodd8=Î2d, correspond-
ing to the separation of cylinders in theG-M direction of the
lattice. Stacking these layers withdx= ±d8 /2 and dy=d8 /2
results in the same PC1 lattice, but rotated through ±45° in
the x-y plane. Similarly, PC2 is constructed by stacking lay-
ers with periodd such thatdx= ±d/2 anddy=Î3/2d.

Waveguides are formed in a regular photonic crystal lat-
tice by removing lines of one or more cylinders to introduce
a localized state within the band gap. Light in one of these
“defect modes” cannot propagate within the bulk crystal and
thus must propagate along the guide without leaking through
the crystal walls. The structures and devices studied in this
paper are made up of a small number of different waveguide
types. In PC1, aW1 straight guide can be formed along the
G-Y crystal axis by removing a single straight line of cylin-
ders as shown in the inset of Fig. 1. The dispersion curve for
this guide is shown as a solid curve in Fig. 1, where the
propagation constantb is plotted on the horizontal axis and
the scaled frequencyvd/2pc is plotted on the vertical axis.
Observe that theW1 guide has a single propagating mode for
all frequencies down to the cutoff atvd/2pc=0.2865
sl=3.49dd.

The second waveguide type that we form in the square
lattice is a double waveguideW1,2snd, separated byn lines of
cylinders, formed by removing two rows of cylinders as
shown in the insets of Fig. 1 for aW1,2s1d and aW1,2s2d
guide. The double guide is effectively a coupled pair ofW1
guides, and as such it supports two supermodesuc±l of even
and odd symmetry, respectively. Whenn is very large, the
two waveguides are effectively isolated from each other, and
the propagation constants of the two modes are almost equal

sb+<b−d; however, as the guides are brought closer to-
gether, this degeneracy is lifted as the fields within the guides
interact with each other, and the mode splittingDb= ub+
−b−u /2 increases. The dispersion curves for the modes of a
W1,2s1d and aW1,2s2d guide are shown in Fig. 1, with the
even modes plotted as dotted curves, and the odd modes as
dashed curves. The mode splitting occurs almost symmetri-
cally about the dispersion curve for the single,W1 guide, and

the average propagation constants for the supermodesb̄
= ub++b−u /2 are close to that of theW1 guide. This property
is used in the semianalytic analysis of the folded directional
coupler in Sec. V. Note that the mode order is different in the
W1,2s1d and theW1,2s2d guides, with the fundamental mode
being odd forn=1 and even forn=2. This issue is discussed
in Ref. [5].

When a single cylinder is omitted from each layer of PC2,
the resulting waveguide has very different properties to the
W1 guide in PC1. Figure 2 shows the dispersion curves for
the propagating modes of the waveguide. As in Fig. 1, the
dotted curves represent even modes, and the dashed curves
odd modes. Observe, first, that the guide is only single mode
in two frequency bands within the band gap, with a second
mode existing in the range 0.2455,vd/2pc,0.2579, and a
third mode at the top of the figure at frequencies higher than
vd/2pc=0.2942. Note also that whereas the propagation
constant of the first mode increases monotonically with de-
creasing frequency, the second mode lies between two fre-
quencies, and has a turning point atb<1.8, where its group
velocity passes through zero. These properties are in strong
contrast to theW1 waveguide in PC1, which supports no
more than one propagating mode, and the dispersion curve of
that mode is always positive. The results in Sec. IV for PC2
are all calculated for frequencies in the second band of Fig. 2
s0.2579,vd/2pc,0.2942d where the waveguide is single
mode.

III. WAVEGUIDE DISLOCATION

The photonic crystal waveguide is the building block for
most photonic crystal devices, and as such, it is essential to
characterize its behavior fully. A waveguide formed by a
linear defect in an ideal uniform photonic crystal guides light
without loss when operated at a frequency where a propagat-

FIG. 1. Dispersion curves for the modes of three straight
waveguides formed in photonic crystal PC1. Inset diagrams indicate
the waveguide geometry. Dashed lines indicate modes of the double
waveguide structures with odd symmetry; dotted lines indicate even
modes. The solid curve is the dispersion curve of the single mode of
the W1 waveguide.

FIG. 2. Dispersion curves for the two modes of a single wave-
guide in photonic crystal PC2. The dashed curve indicates the mode
with odd symmetry, and the dotted curve indicates the even mode.
Frequency ranges for singlemode operation are shaded gray.
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ing defect mode exists within the band gap of the crystal.
Nonuniformities in the crystal or waveguide structure intro-
duce losses due to reflection and scattering. In this section
we consider the effect of a linear dislocation through the
crystal and waveguide. Two structures are considered: a dis-
location perpendicular to the guide direction(along theG-X
axis of the crystal), as in Fig. 3(a), and a dislocation at a 45°
angle to the waveguide(along theG-M crystal axis) [Fig.
3(b)]. The bulk crystal in Fig. 3(b) is the same square lattice
of periodd as in 3(a), but rotated by 45°. Thus, when calcu-
lating the scattering matrices for the rotated crystal, the lat-
tice period within each grating layer isd8=Î2d.

The dislocation is modeled as an interface between two
identical semi-infinite crystals. To interface two structures
with a lateral shift ofsx parallel to the grating layers, we
apply a translation operatorQs=diagfeiapsx/2g to the appropri-
ateR matrices and defineRsx=Qs

−1RQs. The Fresnel matri-
ces are then calculated as in I, Eqs.(41), with Rsx replacing
R. Figure 4 shows the transmission through the dislocated
waveguides in Fig. 3 as a function of displacementsx. The
wavelength is fixed atl=3.25d. Since the period of the su-
percell used in these calculations isDx=21d, the transmis-
sion curves have the same periodicity.

Most of the features in the spectra of Fig. 4 are easily
understood. Both cases exhibit 100% transmission forsx=0,

since this corresponds to an infinite guide with no disloca-
tion. However, the two curves show very different behavior
when a dislocation is introduced. In the case of the perpen-
dicular dislocation[Fig. 3(a)], the transmission curve is sym-
metric aboutsx=0, as expected since the guide is symmetric
about the axis transverse to the interface. The monotonically
decreasing transmission peaks correspond to peaks in the
overlap of the fields in the two waveguide sections. These
peaks occur close to integer values ofsx/d since at these
points the cylinders in both sections are aligned, and there is
no dislocation in the bulk photonic crystal at the interface
except at the waveguide ends.

For the 45° dislocation, the transmission curve is strongly
asymmetric with respect to the sign ofsx8. This strong asym-
metry can be understood from the diagram in Fig. 3(b).
Whensx8.0 (as in the diagram), the structure resembles two
overlapping waveguides at 45° separated by an arrangement
of cylinders. In this case, the overlap region allows strong
coupling between the two waveguides, and hence strong
resonant transmission peaks. For integer values ofsx8 /d8, the
structure resembles thefolded directional couplerdiscussed
in Sec. V. If the guide is displaced in thesx8,0 direction,
however, the two guides are effectively being pulled apart in
both directions, and so the transmission is seen to decrease
rapidly below 1% and stay low asusx8u is increased. Such an
asymmetry in transmission with respect to displacement
could potentially be used in a sensitive directional motion
detector.

IV. FABRY-PÉROT RESONATOR

Resonant devices are an essential component in modern
optics, being used in filters, switches, couplers, and many
other devices. The Fabry-Pérot(FP) resonator is one of the
most basic resonant devices, consisting of two high-
reflectivity mirrors on either end of a cavity. Away from reso-
nance, the transmission of the Fabry-Pérot device is typically
very small, depending on the reflectivity of the individual
mirrors. On resonance, however, the small transmitted am-
plitude through the first mirror interferes constructively in-
side the cavity, and high transmission is possible. If the mir-
rors are identical(balanced), the transmission at resonance
can reach 100%, and this is reduced if the reflectivities are
unequal. The finesseF of a balanced FP cavity is defined as
the ratio of the fringe separation(free spectral range) to the
peak full width at half maximum(FWHM). It is a function of
the reflectivity only, given by

F = pÎR/s1 −Rd, s1d

where R= ur u2 is the reflectance of each mirror. Thus, for
high-finesse cavities, the mirrors must be strongly reflecting,
requiringR.0.9985 forF.2000, assuming there is no loss
in the system. We also characterize the resonance by the
“quality factor” defined as the ratio of the resonant frequency
sv0d to the FWHM s2Dv1/2d of the transmission intensity
peak,Q=v0/ s2Dv1/2d.

Fabry-Pérot devices in photonic crystals have been stud-
ied previously in various contexts[6–8]. Here we apply the

FIG. 3. (a) Straight waveguide with dislocation along theG-X
crystal axis. The circles represent the cross section of the dielectric
cylinders forming the 2D photonic crystal. The cylinder shading
indicates the two distinct waveguide sections considered in the cal-
culations.(b) Identical waveguide, but with dislocation along the
G-M crystal axis. Both diagrams show the supercell used in the
calculations, and the dash-dotted line indicates the line of disloca-
tion. The waveguides extend infinitely in the vertical direction.

FIG. 4. Transmission of dislocated straight guides, for disloca-
tions parallel to theG-X (solid curve) and G-M (dashed curve)
crystal axes.
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Bloch mode method to the simple Fabry-Pérot cavity shown
in Fig. 5, formed by placing two “plugs” ofNplug cylinders in
a single mode waveguide formed in the hexagonal PC lattice
of air holes, PC2. Although their general behavior is similar
to that of conventional Fabry-Pérot resonators, photonic
crystal based Fabry-Pérot devices have one significant differ-
ence that arises because the mirrors in a photonic crystal FP
device are distributed reflectors, with the light penetrating
several layers into the crystal structure. This introduces ad-
ditional spectral features such as resonances in the mirror
reflectivity due to reflections within the mirror itself. The
reflectivity of the mirrors can be increased by adding more
cylinders, or by changing the properties of the cylinders
forming the mirror, such as the radius[7]. Figure 6(a) shows
the reflectivity of a single mirror asNplug is increased. As
expected, the reflectivity increases with the number of cylin-
ders; however, the effect is not monotonic at all wavelengths
due to resonant reflections from either end of the plug. Ad-

justing the radius or the refractive index of the plug cylinders
can also result in improved or degraded reflection from the
mirror.

The properties of an individual mirror can be calculated
with the Bloch mode method as a three-section waveguide
structure, where the two end sections are identical single
waveguides, and the central section is composed of complete
layers of cylinders(possibly with changes made to the cen-
tral one). The transmission and reflection is then calculated
using

R = R12 + T21L
LR23L

LsI − R21L
LR23L

Ld−1T12,

T = T23L
LsI − R21L

LR23L
Ld−1T12, s2d

where the subscripts in the expressions on the right hand side
define the interface and the direction of incident light. Equa-
tions (2) follow directly from Eqs.(54) in I by choosingN
=3. Here, propagation between the two interfaces is de-
scribed by theL matrices which contain the eigenvaluesm
corresponding to the Bloch modes of the central waveguide
section of lengthL.

The scattering matrices in Eq.(2) are calculated for each
of the interfaces, with any symmetries being taken into ac-
count to save computation time. In this case the mirror is
symmetric with identical waveguides on both sides, soT21
=T23 andR21=R23, giving a significant reduction in the re-
quired scattering matrix calculations. Many calculations can
benefit from an understanding of the symmetry properties of
the structure as we show in the examples throughout this
paper.

Unless the central blocking cylinder is made very small,
the plug section does not support any propagating modes,
and hence the reflection of the propagating modes at the 1-2
interface is 100%. However, the mirror is of finite thickness
so energy can be coupled through the plug between the two
waveguides by evanescent modes, giving a nonzero trans-
mission of the propagating Bloch mode from section 1 to
section 3.

The FP cavity is formed by placing two of these mirrors
in a length of single mode waveguide, with a separation of
length Ld. Using the scattering matrices for the mirrors at
each end as the new interface scattering matrices, we now
consider the three sections to be the composite mirrors at
each end(sections 1 and 3) and the central waveguide of
length L (section 2). Transmission through the whole FP
structure is calculated once again as that through a three-
layer structure using Eqs.(2). Figure 6(b) shows the trans-
mission spectra for a cavity of length 5 with increasing mir-
ror thickness. As expected from Eq.(1), the peak width
becomes narrower(Q increases) as the reflectivity of the
mirrors is increased. In this case, since the reflectivity of the
mirrors increases exponentially withNplug at most wave-
lengths[see Fig. 6(a)], Q also increases very rapidly with the
size of the mirror. Table I shows the quality factor of the
Fabry-Pérot resonance as a function of the number of cylin-
ders in the mirror.

The results above include both propagating and evanes-
cent Bloch mode orders. It is not always necessary, however,
to include the evanescent orders and in these cases, many of

FIG. 5. Diagram of the Fabry-Pérot resonator formed in a single
mode waveguide in PC2. The mirrors are formed by “plugs” of
cylinders. For the example in this paper, all cylinders are identical.

FIG. 6. (a) Transmission(log scale) as a function of normalized
wavelength, through a single mirror(plug) formed in a single mode
waveguide in PC2 for mirrors withNplug=1–6. (b) Transmission
through Fabry-Pérot cavity of lengthL=5d in the single mode
waveguide for mirrors withNplug=1–4. Thelegend inset in(a)
applies to the line styles in both(a) and (b).
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the complicated matrix expressions can be replaced with
semianalytic scalar forms[3]. For the FP cavity described
above, the mirror sections have no propagating modes, thus
relying on evanescent modes to carry energy through the
reflecting layers into the cavity. Between the mirrors, how-
ever, most of the energy is carried by the single propagating
Bloch mode, suggesting that a propagating mode analysis
might be appropriate. Here we outline an asymptotic analysis
that can be applied to a general class of PC structures that
comprise three distinct mediaM1,M2, andM3 with the first
and last of these being semi-infinite in extent, and the second
M2 having a finite length ofL layers.

For such structures, the Bloch mode reflection and trans-
mission matrices are given by Eq.(2). Now, if mediaM1 and
M3 are identical and mediumM2 is shrunk to a degenerate
length ofL=0, it follows on physical grounds thatR=0 and
T= I . From these relationships, we may deduceT12T21= I
−R21

2 and also thatR12T21+T21R21=0, both of which hold
analytically within the formulation.

In the case of a photonic crystal structureM2 which is
terminated at each end bysM1d (e.g., a waveguide terminated
at each end in free space[3]), these relationships give

R = T12
−1s− R21 + LLR21L

LdsI − R21L
LR21L

Ld−1T12,

T = T12
−1sI − R21

2 dLLsI − R21L
LR21L

Ld−1T12,

which we recognize as generalizations of the Airy formulae
[9] for a Fabry-Pérot interferometer.

The most significant advantage in using Bloch mode
methods derives from their capacity to efficiently handle
long propagation spans in a fixed medium. Since this is char-
acterized by the matrixLL, it follows that for sufficiently
long spans(typically L.5 or more), the evanescent modes
can be disregarded, with all calculations dominated by the
propagating states. We thus consider an asymptotic analysis
in the case of a single propagating mode for whichLL

.wmLwH wherew is a row vectorf1 0 0…0gT, andmL is a
scalar representing the propagating constant across theL lay-
ers of M2. Multimode structures can be handled similarly,
with w containing additional columns of the unit matrix and
mL being a diagonal matrix containing the propagating eigen-
valuesmi

L [10].
In response to an incident field(in M1) characterized by

the mode vectord, the transmitted field is then

t = T23L
LsI − R21L

LR23L
Ld−1T12d

= T23wmLsI − wHR21wmLwHR23wmLd−1wHT12d

= sT23wwHT12dd
mL

1 − r2m2L , s3d

resulting from the application of the Woodbury formula[11],
wherer=wHR21w. The transmitted flux is then

E f = tHI3t =
uwHT12du2

u1 − r2m2Lu2
wHT23I 3T23w. s4d

From the energy conservation relationships in I[Sec. II B,
Eq. (44)], we realize

T23I 3T23 = I 2 − R23I 2R23 + iR23
H I 2̄ − iI 2̄R23,

and sinceI 2=wwH, it follows that wHT23I 3T23w=1−uru2.
Thus, the energy flux propagating through the structure is

E f =
1 − uru2

u1 − r2m2Lu2
uwHT12du2. s5d

Here, the denominator represents the interferometric action
of the devices, while the numerator expresses the net down-
ward transmission of the flux associated with the single
propagating mode.

To apply this asymptotic treatment to the the Fabry-Pérot
resonator in Fig. 5, we first calculate the transmission and
reflection matrices through a single mirror using the full
Bloch mode calculation. These Bloch mode Fresnel matrices
can then be substituted into the result of Eq.(3) asT23 and
T12 and R12, along with the eigenvaluem for the single
propagating mode of the waveguide. The resulting scalar
equation gives the transmission through the complete FP
structure as a function of the cavity lengthL. Since the prop-
erties of the mirror are wavelength dependent, the scattering
matrices must be calculated for each wavelength of interest.
In practice, only the single element of each scattering matrix
corresponding to the propagating mode needs to be saved
once the matrix has been calculated.

The effect of neglecting the evanescent modes within the
cavity can be seen in Table I, where the resonant wavelength
andQ for the FP cavity of length 5d are compared for the
full evanescent field calculation and the reduced, propagating
mode calculation. For all but the highest-Q cavities, the
agreement is excellent. If the cavity length is reduced, it
might be expected that the evanescent fields would have a
more significant effect on the results. However, even for cav-

TABLE I. Resonant wavelength(units of d), Q, and F for a simple Fabry-Pérot cavity in PC2 for
increasing mirror thickness. Resonant wavelength andQ values are given for both the full numerical calcu-
lation (full ) and the propagating model analysis result(prop).

Nplug l0sdd (full ) l0sdd (prop) Q (full ) Q (prop) F f=pÎR / s1−Rdg

1 3.686 92 3.686 92 78 78 6.8

2 3.690 90 3.690 91 1200 1200 97

3 3.690 642 3.690 656 6.63104 6.43104 5.43103

4 3.690 597 4 3.690 610 8 1.33106 1.13106 1.13105
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ity lengths of two lattice periods, the difference between the
propagating mode result and the full result is relatively
small. For mirrors that are three layers thick, the difference
in resonant frequency calculated with the two methods is less
than 0.05%, and theQ values agree to two figures. Table I
also shows the finesse calculated using the standard FP equa-
tion (1) and the reflectivityR= uru2 as plotted in Fig. 6(a).

We have demonstrated one method for changing the fi-
nesse of a simple Fabry-Pérot cavity, but many alternative
approaches could be taken to design optimized devices for
specific operations. For example, the plug cylinders could be
individually tuned[7] for a specific finesse and/or resonant
frequency, or even dynamically tuned using thermo-optic ef-
fects to produce a tunable device.

V. FOLDED DIRECTIONAL COUPLER

Recently[2] we reported on a design for a compact PC-
based resonant filter, the folded directional coupler. This de-
vice makes use of mode coupling between two parallel
waveguides, as in a directional coupler, and Fabry-Pérot
resonances due to multiple reflections within a cavity region.
The parameters reported in Ref.[2] were for a FDC of length
5d that behaved as a notch-rejection filter withQ.104. The
transmission properties are complementary to those of a
Fabry-Pérot cavity, with almost 100% transmission away
from resonance, and almost 100% reflection at the resonant
frequency.

As shown in Fig. 7, the FDC structure is simply two semi-
infinite single mode waveguides with a common coupling
region of lengthL where the guides run parallel to each
other, separated byNc lines of cylinders. Within the cavity
region, the modes of the two guides couple as in a directional
coupler to form supermodes that allow energy to transfer
between the guides. At each end of the cavity, one of the
waveguides is closed, and the other is open. Reflections from
the closed guide reflect some of the light back into the cavity,

while some light is transmitted out of the cavity into the open
guide. Multiple reflections from the closed guide ends result
in strong resonant behavior as in a Fabry-Pérot cavity. In
terms of modeling the FDC structure with the Bloch mode
method, we consider it to consist of three distinct waveguide
sections:(1) a single mode input guide of typeW1 aligned to
one of the guides of(2) a double waveguide of type
W1,2sNcd, where the guides are separated byNc rows of cyl-
inders, and(3) an output guide also of typeW1 aligned with
the other guide to the input.

In general, FDC structures exhibit quite a complicated
and varied range of transmission spectra. Several examples
are shown in Fig. 8, where the transmission is plotted as a
function of frequency for different guide separations(a) and
cavity lengths(b). The solid curve in both graphs of Fig. 8 is
for a cavity length ofL=5d and guide separation ofNc=1. It
clearly shows the resonance atvd/2pc=0.3311 which was
used to design the filter device described in Ref.[2].

In Ref. [2], an analytic expression was given that was
derived from simple mode coupling and reflection arguments
that only require numerical input of the propagation con-
stants of the two supermodes within the cavity. The expres-
sion can also be derived by starting with the full Bloch mode
method, and making the same type of approximations. The
first approximation is to reduce the size of the Bloch mode
scattering matrices to include only the propagating modes in
each section of the FDC: a single mode in the input guide, a
single mode in the output guide, and two modes in the cen-
tral double guide section. Figure 7(c) shows schematics of
mode profiles in each waveguide section. At the first inter-
face, the single mode couples into the supermodes of the
double guide. Ignoring the back reflection at this first inter-
face since the input guide essentially continues into the
double guide section, we can write approximate expressions
for the Bloch mode reflection and transmission matrices

FIG. 7. (a) Geometry of the FDC and(c) schematics of the
propagating modes in each of the three sections. All of the cylinders
are identical, and the shading is to emphasize the three distinct
waveguide sections.(b) Geometry of the coupled Y junction and(d)
schematics of the propagating modes of even symmetry.

FIG. 8. FDC transmission spectra for(a) FDC of lengthL=5d
with guide separations ofNc=1 (solid), Nc=2 (dashed), andNc=3
(dash-dotted) and (b) FDC with Nc=1 and cavity lengthsL=4
(dashed), L=5 (solid), andL=6 (dash-dotted).
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R12 = 0, T12 = S 1
Î2

− 1
Î2

D s6d

where we have used the approximation that a mode in the
input guide (left) can be approximated byucLl=suc+l
− uc−ld /Î2. This assumption is valid if the mode of the single
waveguide is not significantly distorted by the presence of
the second, parallel waveguide. At the interface between the
double guide and the output guide, we again assume that the
mode in the open guidefucRl=suc+l+ uc−ld /Î2g [see Fig.
7(c)] is transmitted freely into the output guide, and so we
can writeT23=s1/Î2 1/Î2d. The reflection matrix at the sec-
ond interface is a 232 matrix, where elementsi , jd is the
reflection coefficient for the reflection of modej into modei
(traveling in the opposite direction), and modes 1 and 2 are
the even and odd supermodes, respectively. Once again, as-
suming that a mode in the right guide is completely trans-
mitted while a mode in the left guide is completely reflected
back into the left guide, we can write

R23 ·1
1
Î2

1
Î2

−
1
Î2

1
Î2
2 =1

1
Î2

0

−
1
Î2

02⇒ R23 =1
1

2
−

1

2

−
1

2

1

2
2 .

s7d

Similar arguments are used to find the final scattering matrix,

R21 =1
1

2

1

2

1

2

1

2
2 . s8d

The simplified scattering matrices are then substituted
into the generalized Fabry-Pérot equation(2) for the three-
layer structure. TheL term representing propagation through
the central section of the structure is a 232 diagonal matrix
of the eigenvaluesm j =expsib jdd, where j =1, 2.

Following substitution ofb̄ andDb as defined in Sec. II,
the following expressions for the complex transmission and
reflection of the FDC structure are derived:

R =
cos2sDbLdexps2ib̄Ld

1 + sin2sDbLdexps2ib̄dL

T = i expsib̄LdsinsDbLd
1 + exps2ib̄Ld

1 + sin2sDbLdexps2ib̄Ld
. s9d

These equations are identical to those derived under the same
assumptions from the simple mode coupling and reflection
model, described in Ref.[2]. Given that the derivations are
from quite different approaches, it is pleasing that the result-
ing formulas are identical. The treatment outlined here has
advantages over the coupling model, in that it provides a
systematic approach that is more easily applicable to compli-
cated structures.

Equations(9) require the numerical input ofDb and b̄,
and these must be calculated with a numerical method. Here,
we use the full Bloch method to calculate the propagation
constants of the supermodes. The other input parameter is the
cavity length,L. Although L has been defined previously as
the number of complete layers making up the double guide
region, this is not necessarily the correct value to use in Eq.
(9), since the guide ends act as distributed reflectors, and the
phase on reflection is a function of wavelength. The trans-
mission spectra calculated from Eq.(9) do have very similar
shapes to those of the full transmission calculation, and with
some adjustment ofL from the integer value, the curves can
be matched with reasonable accuracy. Attempts to correctL
to give the correct phase on reflection have proved to be no
more accurate than the simple result which assumes thatr
=1 at the end of a guide.

An intermediate approach between the full Bloch mode
calculation and the simplified approach above can also be
used to obtain accurate results more efficiently. The scatter-
ing matrices can be cut back after they have been calculated
to include only the propagating modes, reducing them to the
same dimensions as the idealized versions in Eqs.(6)–(8).
The elements of the scattering matrices in this case, however,
include accurate amplitude and phase information. This ap-
proximation is excellent for most FDC structures and the
smaller matrices greatly reduce subsequent calculation re-
quirements.

Simplified semianalytic expressions such as those given
here are very useful for quickly examining new FDC struc-

tures, requiring only the calculation ofDb and b̄. They also
provide an intuitive understanding of the FDC properties,
such as the very high-Q resonances exploited in Ref.[2]. A
very powerful and efficient set of design tools is created
when such semianalytic methods are combined with more
accurate numerical approaches like the full Bloch mode
method.

VI. COUPLED Y JUNCTION

Efficient, wide-bandwidth Y junctions or beam splitters
are required for compact integration of multiple optical de-
vices on photonic chips. As a basic component of many in-
tegrated optical devices, these junctions must be designed
with a minimum back reflection and maximum transmission
over the operating bandwidth. A number of studies have been
made into the optimal method of splitting a single guided
mode into two modes, and the approaches taken can be
broadly classified into two groups. The first design approach
has been to optimize simple Y-junction designs, while the
second approach has been to design alternative structures
exploiting the properties of photonic crystals. Good trans-
mission has been demonstrated in Y junctions both theoreti-
cally [12–14] and experimentally[14] using optimization
techniques such as placing one, or several, “tuning” cylin-
ders near the junction of three waveguides. High-
transmission junctions, with calculated transmissions up to
99% have been designed; however, in most cases, the trans-
mission bandwidth decreases rapidly as the maximum trans-
mission approaches 100%[12]. Typical bandwidths for the
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devices reported in the literature in triangular lattice PC
structures with air holes are on the order of 10–40 nm for
95% transmission.

An alternative to the Y junction is essentially a directional
coupler with the length chosen to be half of the coupling
length, ensuring that light incident in one of the guides is
split evenly between the two guides. Such a structure was
proposed in Ref.[15] as a means of splitting an input beam
for a Mach-Zehnder interferometer application. The optimal
coupling length is wavelength dependent, but may be robust
enough to give a satisfactory bandwidth. One of the big ad-
vantages of a coupler-based beam splitter is that the back
reflection can be negligible. Variations in coupler length af-
fect the splitting ratio in the output guides, but do not affect
the total transmission of the splitter. This is an important
issue in compact devices where back reflections can cause
unwanted interference effects.

Here, we present a coupled Y-junction design that oper-
ates similarly to a coupled beam splitter, but with the sym-
metry properties of a Y junction, which ensure the transmis-
sion into each output arm is identical. We show that the
device is also very closely related to the folded directional
coupler, and a modal analysis similar to that in Sec. V yields
identical expressions for the transmission and reflection. The
general geometry of the coupled Y junction is illustrated in
Fig. 7(b). Observe that the single input guide enters a region
where it lies beside the two output guides, as in the FDC, or
a directional coupler. Light entering the triple guide region in
the central waveguide couples to the two guides on either
side. If the length of the triple guide region is such that all of
the light has been transferred into the outer guides at the far
end of the triple guide region, then almost all light propa-
gates into the two output guides. The separation of the output
guides in this particular design is only five lattice periods;
however, calculations show that the coupling length of the
modes in the two output guides is several hundred lattice
periods. For compact devices, the output guides can there-
fore be considered isolated from each other.

A simple analysis of the coupled Y junction can proceed
in an almost identical manner to the FDC structure. We must
first consider the propagating modes within each of the three
regions. The input guide has been chosen to support a single
mode, which has even symmetry with respect to the center of
the guide. The output guides support two modes, with odd
and even symmetry, and the central triple guide region can
support three modes—two with even symmetry and one with
odd symmetry. The structural symmetry of the device, and
the fact that the input waveguide can support only an even
mode, mean that there is never any coupling of energy into
the odd modes of either the triple guide or the double guide
regions. Thus, we have a single input mode coupling into
two modes in the central region, which then couple into a
single mode in the output guides, in much the same way as in
the FDC. Schematics of the even modes in each region of the
coupled Y junctions are shown in Fig. 7(d).

Following the analysis of Sec. V, we consider the super-
modes of the multiple guide regions to be a superposition of
modes localized in each guide. For the triple guide region,
denote fields in each of the right, central, and left guides as
ucLl , ucCl, and ucRl, respectively. The three supermodes can
then be approximated by[16]

uc1l =
1

2
sucLl + Î2ucCl + ucRld,

uc2l =
Î2

2
sucLl − ucRld,

uc3l =
1

2
sucLl − Î2ucCl + ucRld,

where modes 1 and 3 have even symmetry, and mode 2 has
odd symmetry. We approximate the propagation constants of

these modes byb1=b̄+Db , b2=b̄, and b3=b̄−Db, where

b̄=sb1+b2d /2 and Db=sb1−b2d /2. Note that the analysis
here is unaffected by the order of the supermodes of the
coupled waveguides[10]. The direct mapping to the FDC
occurs because the input mode can be written asucCl
=suc1l− uc3ld /Î2 and the even supermode in the double out-
put guide asuc+l=suc1l+ uc3ld /Î2. As stated above, no light
couples to the odd modes in the triple guide or the double
output guide, and so we can ignore them in the analysis. The
final expressions for the transmission and reflection of the

coupled Y junction are thus identical to Eq.(9) with b̄ and
Db calculated for the modes of the triple guide, rather than
the double guide.

Although the coupled Y junction also exhibits the sharp
resonances of the FDC, it is the flat-topped, high-
transmission regions of the spectrum that we wish to exploit
for the purposes of this device. Figures 9(a) and 9(b) show
the transmission through two different coupled Y-junctions,
with lengthsL=5d andL=7d, respectively. The junction has
been formed in the PC1 lattice, with the output guides sepa-
rated by five rows of cylinders, and each of the guides in the
central region separated by two rows of cylinders. For
lengths ofL=5d and L=7d, the Y junction has 95% trans-

FIG. 9. Transmission curves for the coupled Y junction with
lengths(a) L=5d and (b) L=7d. Wavelengths have been scaled so
that the high-transmission bands occur nearl=1.55mm. The 95%
transmission bandwidths are 92 and 83 nm, respectively.
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mission bandwidths of approximately 92 and 83 nm, respec-
tively at l=1.55mm, and 99% transmission bandwidths of
about 80 and 76 nm. The dashed curves in Figs. 9(a) and 9(b)
show the result of the analytic expression(9) for the coupled
Y-junction transmission withL=5.75 andL=7.80, respec-
tively, for the two devices. The solid curves show the trans-
mission calculated using the full Bloch mode method. The
difference in the physical length and the length parameter in
the model is a result of phase changes upon reflection, and
the difficulty in defining a reflection plane at either end of the
triple guide region. The analytic results were used to predict
the most suitable geometry for the junction, and it can be
seen that the transmission bandwidth obtained from the full
Bloch mode calculation is better than the analytic model sug-
gests.

When designing the coupled Y junction for maximum
bandwidth, the splitting of the modes in the triple guide re-
gion must be considered. Since the successful operation of
the device requires two propagating even modes to exist in
this region, we must operate in the frequency range above
the cutoff of the second even mode, and below the high-
frequency edge of the band gap. If the three guides are too
close together, the mode splitting becomes very large, and
the frequency range for operation becomes limited. If the
guides are too far apart, the mode splitting becomes so small
that the coupling length required for light to couple from the
central guide to the outer guides becomes very large. Thus,
the choice of guide separation and its effect on mode split-
ting must be considered. It is expected that the bandwidths
could be further increased by adjusting either the radius or
the refractive index of the cylinders between the guides to

tune Db and b̄ for optimum performance. In the examples
chosen above, the second even mode cutoff occurs atl
<3.32d, giving a maximum bandwidth ofDl=0.33d corre-
sponding to approximately 160 nm atl=1.55mm.

The coupled Y-junction design provides a solution to the
problem of achieving high-transmission, wide-bandwidth
beamsplitting. Such properties make this junction ideal for
use in PC-based Mach-Zehnder interferometers[17], where
high-performance junctions are required. Further work will
be required to determine how the performance of such a
junction compares to more conventional Y-junction designs,
not only in terms of transmission and bandwidth, but also
regarding tolerance to fabrication and material variations.

VII. CONCLUSION

The examples presented in this paper are chosen to dem-
onstrate the flexibility of the Bloch mode method for calcu-
lating properties of photonic crystal waveguide devices and
circuits. As a full numerical tool, the method is fast and
efficient as it relies on representing devices as stacks of dis-
tinct photonic crystal waveguide sections. The interface be-
tween each pair of waveguides is characterized by a set of
generalized Fresnel scattering matrices which describe the
reflection and transmission of the Bloch modes(both propa-
gating and evanescent) within each waveguide section. As
we have shown, it can lead to simple expressions for device
performance which enhance physical understanding and fa-
cilitate efficient optimization.

A limitation of the method lies in the enforced periodicity
introduced by the supercell approach. The advantage of this
approach is that it is sufficient to deal with a discrete set of
plane wave orders to couple the fields in adjacent gratings.
The method works well for frequencies inside a photonic
band gap, as then the superperiod can always be taken to be
sufficiently large to isolate, in effect, the different cells.
However, for frequencies in one of the bands, the light can
propagate in the transverse direction and the effective isola-
tion is much more challenging.

Though the method can be applied to any problem to
which a supercell can be applied, it is most efficient when
two conditions are satisfied. The first of these is the need for
a limited number of relevant modes so that an analytic or
semianalytic approach is feasible. As we discussed in Sec. V,
a hybrid method, in which reflection or transmission matrices
of low dimension are obtained from a rigorous calculation,
may be preferable. In addition to this, the efficiency of the
method also improves when the structure under consider-
ation consists of only a few different types of gratings. In this
case the transmission and reflection matrices of only a few
different gratings, the most intensive part of the calculation,
need to be determined.
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