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The Bloch mode scattering matrix method is applied to several photonic crystal waveguide structures and
devices, including waveguide dislocations, a Fabry-Pérot resonator, a folded directional coupler, and a
Y-junction design. The method is an efficient tool for calculating the properties of extended photonic crystal
(PO devices, in particular when the device consists of a small number of distinct photonic crystal structures,
or for long propagation lengths through uniform PC waveguides. The physical insight provided by the method
is used to derive simple, semianalytic models that allow fast and efficient calculations of complex photonic
crystal structures. We discuss the situations in which such simplifications can be made and provide examples.
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I. INTRODUCTION II. PHOTONIC CRYSTAL AND WAVEGUIDE
PARAMETERS

In a companion papefl], hereafter referred to as I, we Two-dimensional photonic crystals used for waveguidin
presented the theoretical framework of the Bloch modet . P Cry . 9 9
typically have square or triangular lattices of cylinders,

SCﬁtter]inlg m(;’;l'[l’IX TGtLhO%I In;hls zaper, t\rl1vedbtu”?h on tthg refwhere the cylinders are either dielectric in an air background,
sults ot and apply the bloch mode method 1o the Study Oly 4ir cylinders in a dielectric background, and so the refrac-

several photonic crystaPC) structures and devices 10 eX- e index is piecewise constant. Depending on the choice of

hibit the advantages of the method. In | we discussed the fulbice parameters and refractive index, the PC can have band
method, based on a complete set of elgenfunctlpns of th aps for TE(magnetic field parallel to cylinder ajisr TM
structures, both propagating and evanescent. In implemenfsiectric field parallel to cylinder axispolarization or both.
ing the method here, the set of eigenfunctions is truncated a4 general, lattices of air cylinders in a background of higher
a level determined by the accuracy required in the calcularefractive index dielectric have larger TE gaps than TM, and
tion. We show that in many situations, good results arehe reverse is the case for dielectric cylinders in[djr
achieved using an approximate method in which only a few Two different PC lattices have been chosen for the ex-
eigenfunctions are included. The choice of which modes tamples used in this paper. PC1 is a square lattice with period
include must be based on the physical properties of the ged of dielectric cylinders with refractive inder,=3 in air
ometry, and, in the cases considered here, they correspond tm,=1). The cylinder radius is=0.3d, resulting in a TM
the propagating modes. The method, in either form, is at itband gap in the wavelength range 2.986/d<3.774,
most powerful when the structure consists of a small numbecorresponding to a scaled frequency range of
of stacks. 0.265< wd/27c<0.337. PC2 is a triangular lattice with pe-
The structures we here consider include waveguide disloriod d of air cylinders(n.=1) in a dielectric with indexn,
cations, Fabry-Pérot resonators, a waveguide structure callet\11.4. For a hole radius @=0.3d, a TE band gap exists in
the “folded directional coupler{FDC) [2], and a PC-based the range 3.338\/d<4.629(0.216< wd/27c<0.299.
Y junction. Each of these structures is readily modeled as a To construct the lattices of cylinders for the Bloch mode
finite number of discrete waveguide sections, replicated pemethod described in I, we must first calculate the plane-wave
riodically in the horizontalx-axis) direction, with propaga- scattering matrices of the individual grating layers that are
tion occurring in thexy plane. We also demonstrate how the stacked to produce the lattice. For the Bloch mode analysis,
method can provide an intuitive understanding of the underthese layers must be periodic with a supercell peiing
lying physics, leading to simple semianalytic expressions tavhere the unit cell can contain multiple cylinders. Typically,
describe the properties of complex photonic crystal structhe cylinders in each unit cell are arranged with a local pe-
tures. A specific application of this latter approach was distiod d, and D, is chosen to be an integral multiple of the
cussed in Ref[3] in the context of a finite photonic crystal |ocal period, so dislocations are not formed at the edges of
waveguide terminated in free space. the supercell. The supercell period must be large enough to
ensure that there is negligible coupling between adjacent
cells. For propagation in a straight waveguide in PC1,
*Electronic address: twhite@physics.usyd.edu.au D,>11d is sufficient to minimize cross coupling. Thus, un-
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FIG. 1. Dispersion curves for the modes of three straight
waveguides formed in photonic crystal PC1. Inset diagrams indicat
the waveguide geometry. Dashed lines indicate modes of the doub, ith odd symmetry, and the dotted curve indicates the even mode.

waveguide structures with odd symmetry; dotted lines indicate eve&requency ranges for singlemode operation are shaded gray.
modes. The solid curve is the dispersion curve of the single mode of

the W, waveguide.

FIG. 2. Dispersion curves for the two modes of a single wave-
uide in photonic crystal PC2. The dashed curve indicates the mode

(B+=pB.); however, as the guides are brought closer to-

. . gether, this degeneracy is lifted as the fields within the guides
less otherwise stated, the results given here ar®fer21d, interact with each other, and the mode splitingg=|3,

so the structures are essentially isolated from each other. 'Il_o 5.|/2 increases. The dispersion curves for the modes of a
form a regular photonic crystal, consider stacking many,,;, ' b

identical grating layers with local pericdiso that each suc- W, »(1) and aW, 5(2) guide are shown in Fig. 1, with the
cessive layer is shifted, along thex axis and3, along they even modes plotted as dotted curves, and the odd modes as

axis. Here, thecy plane lies perpendicular to the axes of the g:ﬁhz%;ir;’ﬁj'd;ghzrggﬂecjﬁjgt:%? tﬁZC;;S gﬂlm%?é :‘y;r:]rgetn-
cylinders. Stacking these layers with=0 andé,=d clearly y P 9 T —

results in the required geometry for PC1—a square latticéh® average propagation constants for the supermghes
with periodd. For reasons to be discussed in Sec. Ill, it can=|B8++B-|/2 are close to that of th&/;, guide. This property
also be useful to construct the same square lattice with thi$ used in the semianalytic analysis of the folded directional
axes rotated by +45°. This is achieved by starting withcoupler in Sec. V. Note that the mode order is different in the
a fundamental grating layer of periati=2d, correspond- Wi2(1) and theW, 5(2) guides, with the fundamental mode
ing to the separation of cylinders in tiieM direction of the ~ being odd fom=1 and even fon=2. This issue is discussed
lattice. Stacking these layers wi=+d'/2 and ,=d’'/2  in Ref.[5]. _ o

results in the same PC1 lattice, but rotated through +45° in When a single cylinder is omitted from each layer of PC2,
the x-y plane. Similarly, PC2 is constructed by stacking lay-the resulting waveguide has very different properties to the
ers with periodd such thats,= +d/2 and§,=3/2d. W, guide in PC1. Figure 2 shows the dispersion curves for

Waveguides are formed in a regular photonic crystal latthe propagating modes of the waveguide. As in Fig. 1, the
tice by removing lines of one or more cylinders to introducedotted curves represent even modes, and the dashed curves
a localized state within the band gap. Light in one of these2dd modes. Observe, first, that the guide is only single mode
“defect modes” cannot propagate within the bulk crystal andn two frequency bands within the band gap, with a second
thus must propagate along the guide without leaking througiode existing in the range 0.24550d/27c<0.2579, and a
the crystal walls. The structures and devices studied in thighird mode at the top of the figure at frequencies higher than
paper are made up of a small number of different waveguide’d/2mc=0.2942. Note also that whereas the propagation
types. In PC1, aV; straight guide can be formed along the constant of the first mode increases mqnotonlcally with de-
I-Y crystal axis by removing a single straight line of cylin- creasing frequency, the second mode lies between two fre-
ders as shown in the inset of Fig. 1. The dispersion curve fofluéncies, and has a turning point@t 1.8, where its group
this guide is shown as a solid curve in Fig. 1, where thevelocity passes through zero. These properties are in strong
propagation constang is plotted on the horizontal axis and contrast to thew; waveguide in PC1, which supports no
the scaled frequenayd/27c is plotted on the vertical axis. More than one propagating mode, and the dispersion curve of
Observe that thwl guide has a Sing]e propagating mode forthat mode is alW&yS pOSltlve. The results in Sec. IV for PC2
all frequencies down to the cutoff abd/27wc=0.2865 are all calculated for frequencies in the second band of Fig. 2
(A=3.49). (0.2579< wd/27c<0.2943 where the waveguide is single

The second waveguide type that we form in the squarénode.
lattice is a double waveguidd, ,(n), separated by lines of
cylinders, formed by removing two rows of cylinders as
shown in the insets of Fig. 1 for W 5(1) and aW; 4(2)
guide. The double guide is effectively a coupled paiVgf The photonic crystal waveguide is the building block for
guides, and as such it supports two supermogesof even  most photonic crystal devices, and as such, it is essential to
and odd symmetry, respectively. Whenis very large, the characterize its behavior fully. A waveguide formed by a
two waveguides are effectively isolated from each other, andinear defect in an ideal uniform photonic crystal guides light
the propagation constants of the two modes are almost equaithout loss when operated at a frequency where a propagat-

Ill. WAVEGUIDE DISLOCATION
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@) F D =21d l since this corresponds to an infinite guide with no disloca-

tion. However, the two curves show very different behavior
when a dislocation is introduced. In the case of the perpen-

0000000000 0000000000

0000000000 0000000000 dicular dislocatioriFig. 3@)], the transmission curve is sym-
0000000000 0000000000 A ) ; . .
gggggggggﬁ;;_d ] metric abouts,=0, as expected since the guide is symmetric
) 5, about the axis transverse to the interface. The monotonically
1 L i | . . . .
.;....‘...........f’. = .2.7.‘;“....................' decreasing transmission peaks correspond to peaks in the
_%%%%%c%0%%%°__0%%0% %22 0% e ° overlap of the fields in the two waveguide sections. These
B R R R X : -
09000000000000000000° (000 00 0000000000020 0 peaks occur close to integer values fd since at these
00000000 [e) 0Oo0o0OO0OOOOOOCOOO H H H H H H
9—“5; o By points the cylinders in both sections are aligned, and there is

no dislocation in the bulk photonic crystal at the interface
FIG. 3. (a) Straight waveguide with dislocation along theXx  except at the waveguide ends.

crystal axis. The circles represent the cross section of the dielectric For the 45° dislocation, the transmission curve is strongly
cylinders forming the 2D photonic crystal. The cylinder shadingasymmetric with respect to the sign gjf This strong asym-
indicates the two distinct waveguide sections considered in the cametry can be understood from the diagram in Figh)3
culations.(b) Identical waveguide, but with dislocation along the Whens, >0 (as in the diagram the structure resembles two
I'-M crystal axis. Both diagrams show the supercell used in theyverlapping waveguides at 45° separated by an arrangement
calculations, and the dash-dotted line indicates the line of dislocapf cylinders. In this case, the overlap region allows strong
tion. The waveguides extend infinitely in the vertical direction.  coupling between the two waveguides, and hence strong
resonant transmission peaks. For integer values /af’, the

ing defect mode exists within the band gap of the crystalgyctyre resembles tHelded directional couplediscussed

Nonuniformities in the crystal or waveguide structure intro-; . Sec. V. If the guide is displaced in th&<0 direction

duce Ios_ses due to reﬂection_and sc_atterin_g. In this SeCtioﬂowever, the two guides are effectively being pulled apart in
we consider the effect of a linear dislocation through theboth directions, and so the transmission is seen to decrease

crystfil and waveguide. Two stru_cture.s are considered: a di?épidly below 1% and stay low ds)| is increased. Such an
location perpendicular to the guide directi@ong thel-X oy mmetry in transmission with respect to displacement

axis of the crystj| as _in Fig. 3a), and a dislocatioq ata 45% could potentially be used in a sensitive directional motion
angle to the waveguidéalong thel'-M crystal axi$ [Fig. detector.

3(b)]. The bulk crystal in Fig. @) is the same square lattice
of periodd as in 3a), but rotated by 45°. Thus, when calcu-
lating the scattering matrices for the rotated crystal, the lat-
tice period within each grating layer & =2d.

The dislocation is modeled as an interface between two Resonant devices are an essential component in modern
identical semi-infinite crystals. To interface two structuresoptics, being used in filters, switches, couplers, and many
with a lateral shift ofs, parallel to the grating layers, we other devices. The Fabry-PérdtP) resonator is one of the
apply a translation operat@=diad €] to the appropri- most basic resonant devices, consisting of two high-
ate R matrices and definRSX=Q;1RQS. The Fresnel matri- reflectivity mirrors on either end of a cavity. Away from reso-
ces are then calculated as in |, E¢l), with Rg, replacing  nance, the transmission of the Fabry-Pérot device is typically
R. Figure 4 shows the transmission through the dislocatedery small, depending on the reflectivity of the individual
waveguides in Fig. 3 as a function of displacemgntThe  mirrors. On resonance, however, the small transmitted am-
wavelength is fixed ak =3.25. Since the period of the su- plitude through the first mirror interferes constructively in-
percell used in these calculationsg=21d, the transmis- side the cavity, and high transmission is possible. If the mir-
sion curves have the same periodicity. rors are identicalbalanceg, the transmission at resonance

Most of the features in the spectra of Fig. 4 are easilycan reach 100%, and this is reduced if the reflectivities are
understood. Both cases exhibit 100% transmissiorsfef,  unequal. The finessg of a balanced FP cavity is defined as
the ratio of the fringe separatiqfree spectral rangeo the

IV. FABRY-PEROT RESONATOR

1

55' ) peak full width at half maximungFWHM). It is a function of
0.8 Pt the reflectivity only, given by
0.6 F=m(RIL-R), (1)
|_

0.4 where R=|r|? is the reflectance of each mirror. Thus, for
0.2 high-finesse cavities, the mirrors must be strongly reflecting,
| \ ‘;,,-.” requiringR >0.9985 forF> 2000, assuming there is no loss

0 5" o ‘“15 10 in the system. We also characterize the resonance by the

“quality factor” defined as the ratio of the resonant frequency

(wp) to the FWHM (2Aw») of the transmission intensity
FIG. 4. Transmission of dislocated straight guides, for disloca-P€ak,Q=wo/ (2Awy))).

tions parallel to thel-X (solid curve and I'-M (dashed curve Fabry-Pérot devices in photonic crystals have been stud-

crystal axes. ied previously in various contex{$—8]. Here we apply the

Displacement, s, (units of d)
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justing the radius or the refractive index of the plug cylinders
can also result in improved or degraded reflection from the

air holes— "
mirror.
The properties of an individual mirror can be calculated
with the Bloch mode method as a three-section waveguide
e0cee ococcoo/p structure, where the two end sections are identical single
waveguides, and the central section is composed of complete
layers of cylindergpossibly with changes made to the cen-
CICIUIUL :0 __________ - tral one. The transmission and reflection is then calculated
AXNNNAE _e 0000 - using
/_ R =R+ THA RpA (= RyA R, AN Ty,
FIG. 5. Diagram of the Fabry-Pérot resonator formed in a single T=ToHANl - RyA RpAD Ty, (2

mode waveguide in PC2. The mirrors are formed by “plugs” of . . . . .
cylinders. For the example in this paper, all cylinders are identicalWhere the subscripts in the expressions on the right hand side
' ' define the interface and the direction of incident light. Equa-
) i , tions (2) follow directly from Eqgs.(54) in | by choosingN
Bloch mode method to the simple Fabry-Pérot cavity shown-3 ere, propagation between the two interfaces is de-
in Fig. 5, formed by placing two “plugs” df,,g cylinders in - gerined by theA matrices which contain the eigenvalugs

a single mode waveguide formed in the hexagonal PC latticgqresponding to the Bloch modes of the central waveguide
of air holes, PC2. Although their general behavior is similargaction of length..

to that of conventional Fabry-Pérot resonators, photonic The scattering matrices in E() are calculated for each
crystal based Fabry-Pérot devices have one significant diffest the interfaces, with any symmetries being taken into ac-
ence that arises because the mirrors in a photonic crystal FR) int to save computation time. In this case the mirror is

device are distributed reflectors, with the light pe”etrati”gsymmetric with identical waveguides on both sides,Tsg
several layers into the crystal structure. This introduces adi-l—23 andR,;=R,s giving a significant reduction in the re-
ditional spectral features such as resonances in the mimQJ,ired scattering matrix calculations. Many calculations can
reflect!v!ty due to r_eflectlons wnhln the mirror |tsglf. The penefit from an understanding of the symmetry properties of
reflectivity of the mirrors can be increased by adding moree strycture as we show in the examples throughout this
cylinders, or by changing the properties of the cylinders aper.

forming the mirror, such as the radi(i#]. Figure §a) shows Unless the central blocking cylinder is made very small,

the reflectivity of a _smgl_e mirror aslp,ug is increased. As_ the plug section does not support any propagating modes,
expected, the reflectivity increases with 'Fhe number of cylin-, 4 hence the reflection of the propagating modes at the 1-2
ders; however, the effect is not monotonic at all wavelengthgnterface is 100%. However, the mirror is of finite thickness
due to resonant reflections from either end of the plug. Ady, energy can be coupled through the plug between the two
waveguides by evanescent modes, giving a nonzero trans-
mission of the propagating Bloch mode from section 1 to
section 3.

The FP cavity is formed by placing two of these mirrors
in a length of single mode waveguide, with a separation of
length Ld. Using the scattering matrices for the mirrors at
each end as the new interface scattering matrices, we now
consider the three sections to be the composite mirrors at
each end(sections 1 and )3and the central waveguide of
length L (section 3. Transmission through the whole FP
structure is calculated once again as that through a three-
layer structure using Eq$2). Figure &b) shows the trans-
mission spectra for a cavity of length 5 with increasing mir-
ror thickness. As expected from E@l), the peak width
becomes narrowefQ increaser as the reflectivity of the
mirrors is increased. In this case, since the reflectivity of the
}f/'g mirrors increases exponentially witN,,, at most wave-

lengths[see Fig. 63)], Q also increases very rapidly with the

FIG. 6. (a) Transmissior(log scal¢ as a function of normalized Size of the mirror. Table | shows the quality factor of the
wavelength, through a single mirrgulug) formed in a single mode ~ Fabry-Pérot resonance as a function of the number of cylin-
waveguide in PC2 for mirrors witiNy,q=1-6. (b) Transmission ~ ders in the mirror.

1

3.4 3.5

3.7 3.8

through Fabry-Pérot cavity of length=5d in the single mode The results above include both propagating and evanes-
waveguide for mirrors withN,,,=1-4. Thelegend inset in(@  cent Bloch mode orders. It is not always necessary, however,
applies to the line styles in botfa) and(b). to include the evanescent orders and in these cases, many of
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TABLE I. Resonant wavelengtlunits of d), Q, and F for a simple Fabry-Pérot cavity in PC2 for
increasing mirror thickness. Resonant wavelength @nhlues are given for both the full numerical calcu-
lation (full) and the propagating model analysis regplop).

Noiug No(d) (full) No(d) (prop) Q (full) Q (prop) Fl=m/RI(1-R)]
1 3.686 92 3.686 92 78 78 6.8
2 3.690 90 3.690 91 1200 1200 97
3 3.690 642 3.690 656 6:610% 6.4x 10 5.4x10°
4 3.690 597 4 3.690 610 8 R1LP 1.1x10° 1.1x10°
the complicated matrix expressions can be replaced with t=ToANl = Ry A R,AD 1T 06

semianalytic scalar formg3]. For the FP cavity described
above, the mirror sections have no propagating modes, thus
relying on evanescent modes to carry energy through the ut
reflecting layers into the cavity. Between the mirrors, how- = (T23WVWT125)m* 3)
ever, most of the energy is carried by the single propagating pr
Bloch mode, suggesting that a propagating mode analysi®sulting from the application of the Woodbury formild],
might be appropriate. Here we outline an asymptotic analysigsherep=w"R,;w. The transmitted flux is then
that can be applied to a general class of PC structures that WHT 1,2
comprise three distinct medi,,M,, andM; with the first E=t"Ts= %W’*TBI AT g (4)
and last of these being semi-infinite in extent, and the second 11-p°pt|
M, having a finite length of layers.

For such structures, the Bloch mode reflection and tran
mission matrices are given by E@®). Now, if mediaM, and

= Toawu (1 = WHR Wi WHR W) WHT 1,6

From the energy conservation relationships ifséec. Il B,
Eq. (44)], we realize

Mj are identicgl and mediunvl, !s shrunk to a degenerate Toal3To3= 15— Rygl Rog+ iRg3|g— i15R 3,
length ofL=0, it follows on physical grounds th&=0 and _ _ Ny )
T=I. From these relationships, we may dedutgT,,;=I  and sincel,=ww", it follows that wHT gl 5Toaw=1-|p|%

_Rgl and also thaR,T,;+T,R,,=0, both of which hold  Thus, the energy flux propagating through the structure is

analytically within the formulation. 1-|p[2
In the case of a photonic crystal structuv which is &= 2p S WHT 1,602 (5)
terminated at each end oi!,) (e.g., a waveguide terminated |11-p*u

at each end in free spag8|), these relationships give Here, the denominator represents the interferometric action

of the devices, while the numerator expresses the net down-
R =T74(- Ryy + A'R»AD (I = RyALR AN T, ward tra_nsmission of the flux associated with the single
propagating mode.
To apply this asymptotic treatment to the the Fabry-Pérot
_ -1 2 AL L Ly-1 resonator in Fig. 5, we first calculate the transmission and
T=Tooll ~Re)AT( = RaA R A Tz, reflection matrigc];es through a single mirror using the full
Bloch mode calculation. These Bloch mode Fresnel matrices
which we recognize as generalizations of the Airy formulaecan then be substituted into the result of E8). asT,; and
[9] for a Fabry-Pérot interferometer. T1, and Rq,, along with the eigenvalug:. for the single
The most significant advantage in using Bloch modepropagating mode of the waveguide. The resulting scalar
methods derives from their capacity to efficiently handleequation gives the transmission through the complete FP
long propagation spans in a fixed medium. Since this is charstructure as a function of the cavity lendthSince the prop-
acterized by the matriA", it follows that for sufficiently erties of the mirror are wavelength dependent, the scattering
long spangtypically L>5 or more, the evanescent modes matrices must be calculated for each wavelength of interest.
can be disregarded, with all calculations dominated by thén practice, only the single element of each scattering matrix
propagating states. We thus consider an asymptotic analysi®rresponding to the propagating mode needs to be saved
in the case of a single propagating mode for whith once the matrix has been calculated.
=wuwH wherew is a row vecto1 0 0...0]", andu" is a The effect of neglecting the evanescent modes within the
scalar representing the propagating constant acrodslthe  cavity can be seen in Table I, where the resonant wavelength
ers of M,. Multimode structures can be handled similarly, and Q for the FP cavity of length & are compared for the
with w containing additional columns of the unit matrix and full evanescent field calculation and the reduced, propagating
ub being a diagonal matrix containing the propagating eigenmode calculation. For all but the higheSt-cavities, the

values,uiL [20]. agreement is excellent. If the cavity length is reduced, it
In response to an incident fielth M;) characterized by might be expected that the evanescent fields would have a
the mode vectow, the transmitted field is then more significant effect on the results. However, even for cav-
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FIG. 7. (@) Geometry of the FDC andc) schematics of the
propagating modes in each of the three sections. All of the cylinders
are identical, and the shading is to emphasize the three distinct F|G. 8. FDC transmission spectra f@ FDC of lengthL=5d
waveguide sectiongb) Geometry of the coupled Y junction aid) with guide separations dfi,=1 (solid), N.=2 (dasheg, andN,=3
schematics of the propagating modes of even symmetry. (dash-dotteyl and (b) FDC with N;=1 and cavity lengthd =4

(dashey, L=5 (solid), andL=6 (dash-dottel

ity lengths of two lattice periods, the difference between the

propagating mode result and the full result is relatively

small. For mirrors that are three layers thick, the differencewhile some light is transmitted out of the cavity into the open
in resonant frequency calculated with the two methods is lesguide. Multiple reflections from the closed guide ends result
than 0.05%, and th€ values agree to two figures. Table | in strong resonant behavior as in a Fabry-Pérot cavity. In
also shows the finesse calculated using the standard FP equarms of modeling the FDC structure with the Bloch mode
tion (1) and the reflectivityR =|p|* as plotted in Fig. @). method, we consider it to consist of three distinct waveguide

We have demonstrated one method for Changing the fisections(]_) a Sing|e mode input guide of typaY; a|igned to
nesse of a simple Fabry-Pérot cavity, but many alternativene of the guides of(2) a double waveguide of type
approaches could be taken to design optimized devices f(Wl,z(Nc), where the guides are separatedNyrows of cyl-
specific operations. For example, the plug cylinders could béhders, and3) an output guide also of type/; aligned with
individually tuned[7] for a specific finesse and/or resonantthe other guide to the input.

frequency, or even dynamically tuned using thermo-optic ef- |y general, FDC structures exhibit quite a complicated

fects to produce a tunable device. and varied range of transmission spectra. Several examples
are shown in Fig. 8, where the transmission is plotted as a
V. FOLDED DIRECTIONAL COUPLER function of frequency for different guide separatigiagand

cavity lengthgb). The solid curve in both graphs of Fig. 8 is

Recently[2] we reported on a design for a compact PC-for a cavity length ol.=5d and guide separation &f.=1. It
based resonant filter, the folded directional coupler. This deelearly shows the resonance @al/27¢=0.3311 which was
vice makes use of mode coupling between two parallelised to design the filter device described in R2f.
waveguides, as in a directional coupler, and Fabry-Pérot In Ref. [2], an analytic expression was given that was
resonances due to multiple reflections within a cavity regionderived from simple mode coupling and reflection arguments
The parameters reported in RE2] were for a FDC of length  that only require numerical input of the propagation con-
5d that behaved as a notch-rejection filter wi@10*. The  stants of the two supermodes within the cavity. The expres-
transmission properties are complementary to those of aion can also be derived by starting with the full Bloch mode
Fabry-Pérot cavity, with almost 100% transmission awaymethod, and making the same type of approximations. The
from resonance, and almost 100% reflection at the resonafitst approximation is to reduce the size of the Bloch mode
frequency. scattering matrices to include only the propagating modes in

As shown in Fig. 7, the FDC structure is simply two semi- each section of the FDC: a single mode in the input guide, a
infinite single mode waveguides with a common couplingsingle mode in the output guide, and two modes in the cen-
region of lengthL where the guides run parallel to each tral double guide section. Figurgcj shows schematics of
other, separated b, lines of cylinders. Within the cavity mode profiles in each waveguide section. At the first inter-
region, the modes of the two guides couple as in a directiondhce, the single mode couples into the supermodes of the
coupler to form supermodes that allow energy to transfedouble guide. Ignoring the back reflection at this first inter-
between the guides. At each end of the cavity, one of théace since the input guide essentially continues into the
waveguides is closed, and the other is open. Reflections fromlouble guide section, we can write approximate expressions
the closed guide reflect some of the light back into the cavityfor the Bloch mode reflection and transmission matrices
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_ (1 -1 Equations(9) require the numerical input a8 and 3,
R12=0, Tiz= ( 2 2 ) 6 and these must be calculated with a numerical method. Here,
we use the full Bloch method to calculate the propagation
where we have used the approximation that a mode in theonstants of the supermodes. The other input parameter is the
input guide (lefty can be approximated by )=(|,)  cavity length,L. AlthoughL has been defined previously as
—|¢/_>)/\s“§. This assumption is valid if the mode of the single the number of complete layers making up the double guide
waveguide is not significantly distorted by the presence ofegion, this is not necessarily the correct value to use in Eq.
the second, parallel waveguide. At the interface between th€), since the guide ends act as distributed reflectors, and the
double guide and the output guide, we again assume that thphase on reflection is a function of wavelength. The trans-
mode in the open guid@yr) =(|e,)+|4.))/\2] [see Fig. mission spectra calculated from E§) do have very similar
7(c)] is transmitted freely into the output guide, and so weshapes to those of the full transmission calculation, and with
can writeTs=(1/v2 1/12). The reflection matrix at the sec- S0me adjustment df from the integer value, the curves can
ond interface is a X 2 matrix, where elementi,j) is the be matched with reasonable accuracy. Attempts to cotrect
reflection coefficient for the reflection of moglénto modei {0 give the correct phase on reflection have proved to be no
(traveling in the opposite directignand modes 1 and 2 are More accurate than the simple result which assumesrthat

the even and odd supermodes, respectively. Once again, ast at the end of a guide.
suming that a mode in the right guide is completely trans- AN intermediate approach between the full Bloch mode
mitted while a mode in the left guide is completely reflectegc@lculation and the simplified approach above can also be

back into the left guide, we can write used to obtain accurate results more efficiently. The scatter-
ing matrices can be cut back after they have been calculated
1 1 1 1 1 to include only the propagating modes, reducing them to the
E E \_E 0 > 75 same dimensions as the idealized versions in Eg8)s{8).
Ros- = 0 Ryg= . The elements of the scattering matrices in this case, however,
211 _ i_ 0 211 include accurate amplitude and phase information. This ap-
V2 2 V2 2 2 proximation is excellent for most FDC structures and the

7 sm_aller matrices greatly reduce subsequent calculation re-
quirements.

Similar arguments are used to find the final scattering matrix, Simplified semianalytic expressions such as those given
here are very useful for quickly examining new FDC struc-
tures, requiring only the calculation &f3 and 8. They also
provide an intuitive understanding of the FDC properties,

(®) such as the very higl® resonances exploited in R¢R]. A
very powerful and efficient set of design tools is created
when such semianalytic methods are combined with more

The simplified scattering matrices are then substituted@ccurate numerical approaches like the full Bloch mode
into the generalized Fabry-Pérot equati@ for the three- method.

layer structure. Thé term representing propagation through

the central section of the structure is & 2 diagonal matrix VI. COUPLED Y JUNCTION

of the eigenvalueg;=exp(ig;d), wherej=1, 2.

Following substitution of8 and AB as defined in Sec. lI,
the following expressions for the complex transmission an
reflection of the FDC structure are derived:

Ro1=

NI NI
NI NI

Efficient, wide-bandwidth Y junctions or beam splitters
re required for compact integration of multiple optical de-
ices on photonic chips. As a basic component of many in-
tegrated optical devices, these junctions must be designed
— with a minimum back reflection and maximum transmission
- COSZ(A'BL)GX“Z"BL_) over the operating bandwidth. A number of studies have been
1 + sirf(ABL)exp(2i B)L made into the optimal method of splitting a single guided
mode into two modes, and the approaches taken can be
— broadly classified into two groups. The first design approach
1+exp2ipl) g) has been to optimize simple Y-junction designs, while the
1 + sirf(A BL)exp(ZiEL)' second approach has been to design alternative structures
exploiting the properties of photonic crystals. Good trans-
These equations are identical to those derived under the sam@ssion has been demonstrated in Y junctions both theoreti-
assumptions from the simple mode coupling and reflectiortally [12—14 and experimentally{14] using optimization
model, described in Ref2]. Given that the derivations are techniques such as placing one, or several, “tuning” cylin-
from quite different approaches, it is pleasing that the resultders near the junction of three waveguides. High-
ing formulas are identical. The treatment outlined here hasransmission junctions, with calculated transmissions up to
advantages over the coupling model, in that it provides ®9% have been designed; however, in most cases, the trans-
systematic approach that is more easily applicable to complimission bandwidth decreases rapidly as the maximum trans-
cated structures. mission approaches 100942]. Typical bandwidths for the

T =i expli BL)sin(ABL)
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devices reported in the literature in triangular lattice PC
structures with air holes are on the order of 10-40 nm for
95% transmission.

An alternative to the Y junction is essentially a directional
coupler with the length chosen to be half of the coupling
length, ensuring that light incident in one of the guides is
split evenly between the two guides. Such a structure was
proposed in Ref[15] as a means of splitting an input beam
for a Mach-Zehnder interferometer application. The optimal
coupling length is wavelength dependent, but may be robust
enough to give a satisfactory bandwidth. One of the big ad-
vantages of a coupler-based beam splitter is that the back 06
reflection can be negligible. Variations in coupler length af- ~
fect the splitting ratio in the output guides, but do not affect 04
the total transmission of the splitter. This is an important
issue in compact devices where back reflections can cause
unwanted interference effects.

Here, we present a coupled Y-junction design that oper- 148 15 1'527»}'5;1) 156 158 16
ates similarly to a coupled beam splitter, but with the sym- .
metry properties of a Y junction, which ensure the transmis- g, 9. Transmission curves for the coupled Y junction with
sion into each output arm is identical. We show that theengths(a) L=5d and(b) L=7d. Wavelengths have been scaled so
device is also very closely related to the folded directionaknat the high-transmission bands occur nearL.55 um. The 95%

coupler, and a modal analysis similar to that in Sec. V yieldsyansmission bandwidths are 92 and 83 nm, respectively.
identical expressions for the transmission and reflection. The

general geometry of the coupled Y junction is illustrated in 1

Fig. 7(b). Observe that the single input guide enters a region _= 5

where it lies beside the two output guides, as in the FDC, or |0 = 2(|‘/’L> +\2lYe) + [¥w),

a directional coupler. Light entering the triple guide region in

the central waveguide couples to the two guides on either V2

side. If the length of the triple guide region is such that all of |y = — () = |w)),

the light has been transferred into the outer guides at the far 2

end of the triple guide region, then almost all light propa- L

gates into the two output guides. The separation of the output _ 5

guides in this particular design is only five lattice periods; |hg) = §(|‘/’L>_ V2|4 + [¢R),

however, calculations show that the coupling length of the

modes in the two output guides is several hundred lattic&vhere modes 1 and 3 have even symmetry, and mode 2 has
periods. For compact devices, the output guides can ther@dd symmetry. We approximate the propagation constants of

fore be considered isolated from each other. these modes by, =B+AB, B,=pB, and B;=B-ApB, where
A simple analysis of the coupled Y junction can proceed.

in an almost identical manner to the FDC structure. We musgz(’61+’62)/2 and A5=(8,-5;)/2. Note that the analysis

first consider the propagating modes within each of the thre ere is unaffected by the order of the supermodes of the

: ; : ; upled waveguide§l0]. The direct mapping to the FDC
regions. The input guide has been chosen to support a Smg?g(écurs because the input mode can be written|as

mode, which has even symmetry with respect to the center of = )
the guide. The output g)L/Jides sﬁpport tw?) modes, with odd_'(|‘/’1>,_|‘/’3>)/\"2 and the evenygupermode in the doublg out-
and even symmetry, and the central triple guide region caRUt guide aéf'/’+>:(|‘/’l>+|'/’3>)_/\’2- As stated above, no light
support three modes—two with even symmetry and one wittfouples to the odd modes in the triple guide or the double
odd symmetry. The structural symmetry of the device, andPutput guide, and so we can ignore them in the analysis. The
the fact that the input waveguide can support only an evefinal expressions for the transmission and reflection of the
mode, mean that there is never any coupling of energy inteoupled Y junction are thus identical to E@) with 8 and
the odd modes of either the triple guide or the double guide\3 calculated for the modes of the triple guide, rather than
regions. Thus, we have a single input mode coupling intache double guide.
two modes in the central region, which then couple into a Although the coupled Y junction also exhibits the sharp
single mode in the output guides, in much the same way as iresonances of the FDC, it is the flat-topped, high-
the FDC. Schematics of the even modes in each region of theansmission regions of the spectrum that we wish to exploit
coupled Y junctions are shown in Fig(dj. for the purposes of this device. Figure@P@and 9b) show
Following the analysis of Sec. V, we consider the superthe transmission through two different coupled Y-junctions,
modes of the multiple guide regions to be a superposition ofvith lengthsL=5d andL=7d, respectively. The junction has
modes localized in each guide. For the triple guide regionbeen formed in the PC1 lattice, with the output guides sepa-
denote fields in each of the right, central, and left guides agated by five rows of cylinders, and each of the guides in the
l4),l¥c), and|yw), respectively. The three supermodes cancentral region separated by two rows of cylinders. For
then be approximated HyL6] lengths ofL=5d andL=7d, the Y junction has 95% trans-

. &
~

%
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mission bandwidths of approximately 92 and 83 nm, respec- VII. CONCLUSION
tively at A=1.55um, and 99% transmission bandwidths of

about 80 and 76 nm. The dashed curves in Figs.&nd gb) The examples presented in this paper are chosen to dem-

onstrate the flexibility of the Bloch mode method for calcu-

show the result of the analytic expressi@ for the coupled lating properties of photonic crystal waveguide devices and
Y-junction transmission witl.=5.75 andL=7.80, respec- 9 prop photo Y 9 .
circuits. As a full numerical tool, the method is fast and

tively, for the two devices. The solid curves show the trans"efﬁcient as it relies on representing devices as stacks of dis-
mission calculated using the full Bloch mode method. The P 9

difference in the physical length and the length parameter i|1‘|nct photonic crystal waveguide sections. The interface be-

the model is a result of phase changes upon reflection, ant&veen each pair of waveguides is characterized by a set of

the difficulty in defining a reflection plane at either end of thegenerahzed Fresnel scattering matrices which describe the

triple guide region. The analytic results were used to predic[eerCtIon and transmission of the Bloch modbeth propa-

the most suitable geometry for the junction, and it can begatlng and evanescenwithin each waveguide section. As

seen that the transmission bandwidth obtained from the fuw:rfg?mr?sgv\\/l\?ﬁilcthczgr:zﬁ?:eto ﬁms]ipclgl ixnpégfsstg:dsiéor:ﬁg'?:_
Bloch mode calculation is better than the analytic model sugp. . g L phy 9
gests. cilitate efficient optimization.

I . . . A limitation of the method lies in the enforced periodicity
When designing the coupled Y junction for maximum . .
bandwidth, thg spl?tting of thg moder in the triple guide re_lntroduced by the supercell approach. The advantage of this

gion must be considered. Since the successful operation &pproach Is that it Is sufficient to d_eal W.ith a_discrete set of
the device requires two propagating even modes to exist i lane wave orders to couple the fields in adjacent gratings.

this region, we must operate in the frequency range abovghe method works well for frequencies inside a photonic
the cutoff of the second even mode, and below the high- and gap, as then the superperiod can always be taken to be

: ufficiently large to isolate, in effect, the different cells.
frequency edge of the band gap. If the three guides are toéowever, for frequencies in one of the bands, the light can

close together, the mode splitting becomes very large, an ) L L2
the frequency range for operation becomes limited. If the?rop_agate in the transverse direction and the effective isola-
. pnis much more challenging.

guides are too far apart, the mode splitting becomes so smal .
that the coupling length required for light to couple from the Though the method can b? appllgd to any.p.roblem to
which a supercell can be applied, it is most efficient when

central guide to the outer guides becomes very large. Thus, " o ) ;
the choice of guide separation and its effect on mode Splitfwo conditions are satisfied. The first of these is the need for

ting must be considered. It is expected that the bandwidthg limited number of relevant modes so that an analytic or

could be further increased by adjusting either the radius o§em|analyt|c appr_oach_ls feaS|bI(_a. As we d|scgs§ed in S?C' Vi
a hybrid method, in which reflection or transmission matrices

the refractive index of the cylinders between the guides toOf low dimension are obtained from a ri lculati
. gorous calculation,
tune A and g for optimum performance. In the examples may pe preferable. In addition to this, the efficiency of the
chosen above, the second even mode cutoff occurs at method also improves when the structure under consider-
~3.34, giving a maximum bandwidth ahA=0.33 corre-  ation consists of only a few different types of gratings. In this
sponding to approximately 160 nm &&1.55 um. case the transmission and reflection matrices of only a few

The coupled Y-junction design provides a solution to thegitferent gratings, the most intensive part of the calculation,
problem of achieving high-transmission, wide-bandwidth;,ced to be determined.

beamsplitting. Such properties make this junction ideal for

use in PC-based Mach-Zehnder interferomef&ig, where

h|gh-per]‘ormance junctions are required. Further work will ACKNOWLEDGMENTS

be required to determine how the performance of such a

junction compares to more conventional Y-junction designs, This work was produced with the assistance of the Aus-
not only in terms of transmission and bandwidth, but alsatralian Research Council under the ARC Centres of Excel-
regarding tolerance to fabrication and material variations. lence program.
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